Aerospace Projects lifting off in Ōtautahi Christchurch - sUAS News - The Business of Drones
Ōtautahi Christchurch is home to a diverse community of start-ups, entrepreneur-driven companies and organisations dedicated to aerospace innovation.
Canterbury is well on the way to being an integral facet of a flourishing national aerospace sector. With unique physical attributes, proximity to international ports, existing testing facilities and one of New Zealand’s largest electronic manufacturing clusters, the talent pool is also here; nearly a third of national aerospace engineering students, and nearly a quarter of engineering students, graduate from Canterbury universities.
Fuelling the transition to more sustainable, efficient ways of transport, the Christchurch aerospace industry has a range of new and well-established key players shaping the sector, from research and design, to building, testing, launching, and servicing satellites, drones, flying vehicles, space launch vehicles, and manned and unmanned spacecraft.
Below, we’ve curated a selection of exciting companies operating in the region that are making a splash in the aerospace industry.
Delivering technically advanced and innovative composite engineering and cryogenic solutions.
World-leaders in magnetic, superconducting, and cryogenic systems, AFCryo (formerly Fabrum Solutions) designs, develops and manufactures all of their technology here in Christchurch. Their facilities include the largest 5 axis waterjet profiling company in New Zealand, along with CNC mills and turning centres. With a large team of design engineers and craftsmen, they have the ability to conceptualise, design, manufacture and assemble complete systems inhouse.
AFCryo works internationally and leads the world in the design, development, and build of industrial composite technological solutions. With a wide range of capabilities and expertise, AFCryo contributes to several industries, including medical, research, power systems, creative, and oil and utilities.
AFCryo produces equipment for the cryogenic and superconducting industries, including composites for cryogenic containment and cooling systems in power systems equipment and other magnetic systems. AFCryo also manufactures large volume industrialised cryocoolers.
Since building the composite dewar and associated hardware for the world’s first partial core superconducting transformer in conjunction with the University of Canterbury, AFCryo have also been involved in numerous global HTS and LTS projects.
Managing Director at AFCryo, Christopher Boyle sees Christchurch as a living environment that attracts open minded motivated people. “Our choice to locate in Christchurch was deliberate – the network is very supportive of innovative discussions, and we wanted to build on the city’s depth of manufacturing and draw on the talent from the region’s tertiary institutes.”
We had a chat to AFCryo Managing Director Chris Boyle.
What do you see as big growth opportunities in Canterbury in the aerospace sector? How do you see AFCryo to fit into this picture?
There’s a lot of potential for growth in the Christchurch aerospace industry. Opportunities in plasma drives, fuelling systems, and integrated satellite platforms in particular are a few of the key areas for Canterbury aerospace.
AFCryo’s role is to continue growing as a significant player in global hydrogen production activities, LOX systems for aviation, integrated platforms for satellite systems, and high speed transportation systems.
In early 2020, we teamed up with the UK’s Clean Power Hydrogen (CPH2) company, signing a landmark agreement to pave the way to produce a world-leading, Green Hydrogen production system from New Zealand by mid 2021. This was an exciting step, joining New Zealand technology with UK-developed electrolyser technology. It will provide a solution that will help the New Zealand Government’s vision to harness the hydrogen opportunity for a sustainable and resilient energy future and create a zero-carbon emmission’s environment. It is also important that the employment generated by the New Zealand technology will be based in New Zealand.
We’re now working on some exciting new projects, including plasma drives for space travel, superconducting aviation motors, hydrogen production units, and next evolution coldhead technology for low-temperature cryocoolers.
Why do you think Canterbury is an ideal location for an aerospace hub for New Zealand?
Canterbury has such a supportive innovation network, making it an ideal aerospace hub. It has high-tech manufacturers, and a living environment that attracts open minded, motivated people. There’s a huge opportunity for growth in first-stage creation and prototyping for the aerospace sector, especially in engineering design and manufacturing.
The Asteria team: Anthony Watson, Sarah Pratt, Jess Page, and David Wright
Creating state-of-the-art bespoke electrical and mechanical solutions for New Zealand’s burgeoning aerospace sector.
Asteria offers engineering consulting services, rapid prototyping, electronics and PCB design, embedded software and firmware, cutting edge technologies, power systems and more. Their goal: to help their clients’ projects get off the ground.
From harnessing solar arrays to building cubesats, Asteria Engineering Consultancy understands how to create specialised products for flight and space. Asteria works closely with clients from understanding requirements and design right through to manufacture and testing to create customised, successful solutions to achieve their clients’ goals.
Since beginning in 2017, Asteria has grown to provide services to a range of customers here at home in New Zealand, as well as internationally. Asteria has worked on nanosatellites, unmanned aerial vehicles, payloads and specialised batteries. Leaders in electrical and aerospace engineering, Asteria provides customised, reliable, high quality, and timely services to every client.
We had a chat to Asteria Founder and CEO David Wright.
Where do you see Asteria in the future?
First, we want to be the company to go to for bespoke, small, lightweight, effective electronics for aerospace in New Zealand.
Second, we offer excellent engineering consulting services to help aerospace companies in New Zealand thrive and grow their businesses. The aerospace sector in New Zealand, and especially in Canterbury, is on the edge of booming and we want to be a core part of that, growing Asteria and supporting our fellow aerospace entrepreneurs.
Third, we offer rapid prototyping – but we want to make that even faster (without compromising on quality). We’re exploring a number of ways that we could reduce the time to create bespoke aerospace solutions, including the development of a GaNFET power system prototyping service, which would significantly cut the development time of creating high performance power systems.
What do you see as big growth opportunities in Canterbury in the aerospace sector? How do you see Asteria to fit into this picture?
We’re seeing more companies pushing the boundaries of possibility, and those companies are growing. As those companies, like Dawn Aerospace and Kea Aerospace, strive to achieve their goals, we see Asteria as a potential partner to facilitate that, providing lightweight, small electronics ideally suited for flight so that those companies can focus on achieving their dreams.
Why do you think Canterbury is an ideal location for an aerospace hub for New Zealand, and specifically for Asteria?
The community and knowledge base is what makes Canterbury great. There are so many people here with a range of expertise, both in aerospace and in supporting areas, that have a passion for space and discovery. These people enjoy working together and helping each other, and coming together as a community at the aerospace meet-ups. For aerospace companies looking to grow, this is the place to be – which is why Asteria is here.
Dawn Mk II Aurora
Creating end-to-end architecture for delivering, positioning, and returning spacecraft in an environmentally conscious way.
Merging the world of aviation and rockets, the Dawn Mk-II Aurora is the latest rocket-powered vehicle of a series that will eventually deliver and return satellites and assets from space.
“The Aurora represents a massive step forward in space transportation,” said Stefan Powell, Chief Technology Officer of Dawn Aerospace. “Using the same vehicle hundreds or even thousands of times means we don’t need a factory to produce rockets. We can operate a fleet of vehicles to access space daily. And we don’t have to pollute the ocean with rocket debris as we do it.”
With staff in Delft, Netherlands, Europe’s aerospace hub, Dawn’s HQ is based here in Christchurch. “It’s an ideal place to base operations, because it is a good location for flight testing, has less air traffic and relatively stable weather,” says Stefan.
Removing the need for exclusion zones and to shut down airspace for flight, the Dawn Mk-II Aurora is capable of taking off and landing from standard airports, alongside normal aircraft.
“The challenge of getting to space is equal parts the vehicle, the launch infrastructure and the regulation,” said James Powell, General Manager and CFO. “Building a cheaper rocket, as many are trying to do, only helps with the first part. Dawn’s spaceplane addresses all three factors. The CAA and NZSA have established the best regulatory system in the world, which makes this possible. We are privileged to be working with them.”
Shaker Table
Providing development testing and advice, specializing in environmental testing, including Highly Accelerated Life Testing (HALT) and Highly Accelerated Stress Screening (HASS).
Founded in 2005 to serve the domestic and international market, HALT & HASS is passionate about testing and reliability. Providing a range of services, testing, and equipment, HALT & HASS takes a pragmatic approach to planning, testing, and reporting, and ensuring clients understand the processes and outcomes.
Based in Christchurch, HALT & HASS work closely with the regions’ hyper-electronics and healthcare community, along with supporting industries. They sell, service and maintain test equipment, as well as offer many types of testing, including Highly Accelerated Life Testing (HALT); quantify product reliability using Accelerated Life Testing (ALT); demonstrate reliability using Reliability Demonstration Testing (RDT); and control manufacturing using Highly Accelerated Stress Screening (HASS).
Striving to help clients increase profitability, market share, and brand awareness, HALT & HASS provides end-to-end solutions and advice for clients.
We had a chat to HALT & HASS Owner Donovan Johnson.
Where do you see HALT & HASS in the Future?
We plan on increasing our testing capability over the coming years to further support the industries we serve – our moniker of “You make it – we break it” fits perfectly, we use over-stress testing to reduce testing time and cost by fast and iterative design changes, and increase effectiveness and reliability of the end product. Our business model is relatively simple, consisting of two main sections – both we plan on improving going forward:
- Test Lab
The lab is designed to allow quick and economical access to all customers, but more specifically with a goal of supporting start-ups and disruptive technologies by providing access to high-tech, modern test equipment. Early in development, and particularly for start-ups, funding is important, we’re here to ensure the maximum impact from your testing through the availability of our expertise to streamline your testing process.
- Test Equipment
We sell, service and maintain a range of the world’s leading test equipment. From environmental chambers to vibration, packaging and Highly Accelerated Life Testing chambers. The sales side of our business is used to generate funding for our laboratory – so that we can continue to purchase and provide modern equipment and fill the niche market for microservices in the testing space. The culmination of these two parts gives us the ability to provide a full circle or service to our customers. When you’re new we’ll do everything we can to get you results in a quick and efficient manner. When you grow we want to be there too – providing the equipment and expertise to help you set up your own internal testing capabilities, which then feeds back into new equipment purchases for our lab, to help future start-ups make their way in the world.
What do you see as big growth opportunities in Canterbury in the aerospace sector? How do you see HALT & HASS to fit into this picture?
I think the space industry globally is going epically well. New Zealand is definitely up there with innovation and expertise and it’s exciting to see the development in Canterbury specifically. In order to attract more companies and start-ups we need to make sure we have facilities in place to speed development, ease regulation, and allow access to testing facilities from the sub-module level up to full-scale rockets. Project Tawhaki is an outstanding development that enables customers to test their products in an isolated, yet supported place. Full-scale testing is difficult, and often conducted in an ad hoc manner to get around regulatory requirements. An open, accessible space such as this is critical to the success of the space industry in Christchurch.
Regarding testing facilities: We’d love to scale up to provide a world-leading testing facility for the space industry. I believe we’ve got a good base to do so, but the challenge for us is capital funding. Test equipment, and specifically space-testing equipment is extremely expensive, meaning the business-case to procure it rests on the market willing to use it. We currently wouldn’t have enough customers to generate a ROI on this equipment and so we’re actively looking at alternative funding methods to procure the resource for Canterbury. Our suppliers have extensive experience in setting up these facilities, and they produce the equipment needed. We’re currently looking at how we can leverage that connection from a funding perspective to expand our testing service to cover the various needs of the space industry.
Regarding reliability and expertise: I love what I do, I’ve been testing stuff since 2000 and have enjoyed a progression from testing network equipment to electric propulsion, to rockets. I’ve built an extensive knowledge of the test methods that provide the fastest results, lowering costs, and decreasing design iteration duty cycles. It’s this knowledge that I hope to share with the community, enabling fast development to occur.
Regarding regulation: Standards are designed to give a supplier a simplified path to market. If you meet the standards you get to launch your rocket, in this instance. One of the outstanding opportunities we have as a country and a region is the fact we are starting with a blank page on regulation. Space-native countries like the USA have heavy and cumbersome frameworks forged from decades of failures. These were carved out to protect human life and are still applied to modern automated launch systems with the same brush, being heavy, old, and somewhat irrelevant to modern vehicles they unnecessarily slow development, by burdening the supplier with testing methodologies that have been improved upon 10–fold in the past few years.
One of the great tests, and the one from which we get our name is Highly Accelerated Life Testing (HALT). HALT is and has been used by many aerospace companies to increase reliability, to find product weakness early in design, and to decrease the time to market. It’s a death-test, and fits our ethos perfectly. Running HALT, and to a greater extent Highly Accelerated Stress Screening (HASS) reduces the risk of failure but also the time to develop and deploy products. Current testing methods rely on single-axis vibration testing, along with long term thermal cycling (weeks-months), when the same failure-modes could be uncovered using modern testing methods such as HALT in hours or days.
I sincerely hope the industry, and the government realise the opportunity that exists here. To repeat, there are faster ways to test, which means faster times to market, lower cost of entry, and higher reliability on launch. HHCHZ has the experience to design testing programmes that are modern, scalable and efficient and we really want to contribute in this space.
Why do you think Canterbury is an ideal location for an aerospace hub for New Zealand, and specifically for HALT & HASS?
Well, I mean, personally and number 1 for me is that I grew up and live here! My connections – both work and personal, have been developed over 20+ years of working in the high-tech industry in Canterbury. As a region, we have an excellent and diverse set of engineering talent that has successfully driven startups from concept through to international deployment in a wide-range of industries. In what’s considered a very small city globally, we’ve become known as the “Silicon Plains” where the high-tech industry has flourished.
From electric-automotive, to healthcare, location-based systems, power electronics and to networking, and now on to space we’ve developed a workforce that is passionate, innovative and ready to solve real-world and often extremely difficult challenges. The cross-pollination of engineers across these industries provides a well-rounded workforce that’s solved a lot of problems, in a lot of different markets, this creates a can-do mindset, and the engineering community in Canterbury is something I deeply appreciate and love. I love the fact I can go to a new start-up for a meeting, and within 5 minutes I’ll see someone I’ve worked with, someone we’ve tested for, or helped in some other way. It might seem to the outsider that this indicates a limited talent pool – but it’s quite the opposite, it’s more that people like to move around – because they love the challenge of something new – and that over 20 years we’ve been lucky enough to work with large pools of engineers at some of Canterbury’s finest tech companies.
The other cool thing about Canterbury is it’s access to the outdoors, and to vast swathes of land – specifically now with access to Project Tawhaki we just have the ability to deploy and test at a scale most other small regions don’t enjoy.
https://dronedaddy.us/rss/suasnews/aerospace-projects-lifting-off-in-otautahi-christchurch-suas-news-the-business-of-drones/
Comments
Post a Comment